
3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 1/19

This tutorial describes how to deploy the database engine PostgreSQL in a Google Kubernetes
Engine (GKE) cluster. The tutorial also discusses the GKE deployment in comparison to a
conventional deployment of PostgreSQL on a virtual machine or in Cloud SQL. This tutorial
assumes that you're familiar with using Kubernetes, the Google Cloud Console, and the gcloud
command-line tool.

Objectives

Learn to install a PostgreSQL instance in GKE using a standard Docker image.

Enable access from your laptop and public access to the database instance.

Understand the architectural considerations of installing PostgreSQL in GKE compared to
a virtual machine installation.

Costs

This tutorial uses the following billable components of Google Cloud:

Compute Engine

Google Kubernetes Engine

To generate a cost estimate based on your projected usage, use the pricing calculator
 (/products/calculator).

Before you begin

In this tutorial, you use gcloud tool commands. This tutorial assumes that you have either
already installed the Cloud SDK (/sdk/docs/install) or that you are familiar with how to use Cloud
Shell (/shell/docs/running-gcloud-commands).

Deploying highly available PostgreSQL with
GKE

https://cloud.google.com/products/calculator
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/shell/docs/running-gcloud-commands

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 2/19

1. In the Google Cloud Console, on the project selector page, select or create a Google
Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboar

2. Make sure that billing is enabled for your Cloud project. Learn how to con�rm that billing
is enabled for your project (/billing/docs/how-to/modify-project).

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up) later on this page.

Understanding stateful Kubernetes database applications

You use Docker containers to implement microservice-based applications on Kubernetes. You
then encode the business logic of the application in Docker images that you deploy into
Kubernetes. When you start the application, it's executed as containers in Kubernetes pods.

To provide their business logic, stateful applications rely on persistent state. The application
stores state into a persistence layer that ensures that data is available even if the application is
restarted (for example, when the application is upgraded or after an outage).

Databases rely heavily on local disks for persistence. This document shows how you can
deploy a PostgreSQL instance into GKE as a container based on standard PostgreSQL images.
This document also shows how you can deploy highly available PostgreSQL on GKE using
regional persistent disks.

Various Kubernetes operators are available to install a PostgreSQL instance, such as those
available from Zalando (https://www.postgresql.org/about/news/postgres-operator-v150-2036/) and
CrunchyData (https://github.com/CrunchyData/postgres-operator). However, this document focuses
on the basic installation relying solely on standard PostgreSQL Docker images.

Deploying a database instance as a container isn't the only option and might not be the best
approach for you. Instead, you can run the database instance within a Compute Engine

https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/billing/docs/how-to/modify-project
https://www.postgresql.org/about/news/postgres-operator-v150-2036/
https://github.com/CrunchyData/postgres-operator

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 3/19

instance or in Cloud SQL for PostgreSQL. There are positives and negatives to these
approaches, which are discussed in the Understanding options to deploy a database instance
in GKE (#understanding_options_to_deploy_a_database_instance_in_gke) section later in this
document.

Database deployment on Kubernetes

On a high level, a database instance can run within a Kubernetes container. A database
instance stores data in �les, and the �les are stored in persistent volume claims. A
PersistentVolumeClaim must be created and made available to a PostgreSQL instance. In
this tutorial, you use a regional persistent disk as the underlying storage class in order to
implement PostgreSQL with high availability.

To create the database instance as a container, you use a deployment con�guration. In order to
provide an access interface that is independent of the particular container, you create a service
that provides access to the database. The service remains unchanged even if a container (or
pod) is moved to a different node.

A database that runs as a service in a Kubernetes cluster and that stores its database �les in
PersistentVolumeClaims is bound to the lifecycle of the cluster. If the cluster is deleted, the
database is also deleted.

Deploying PostgreSQL

The following steps show you how to install a high-availability PostgreSQL database instance
running in GKE as a service. The con�guration values that you use are example values. You can
adjust the con�guration values to �t your workload.

In this tutorial, you run gcloud tool commands from your local command line or in Cloud Shell.

Create a GKE regional cluster

In this step, you install a regional GKE cluster (/kubernetes-engine/docs/concepts/regional-clusters).
Unlike a zonal cluster, a regional cluster is replicated into several zones, so an outage in a
single zone doesn't make the service unavailable.

1. Verify that kubectl is installed:

https://cloud.google.com/kubernetes-engine/docs/concepts/regional-clusters

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 4/19

If kubectl is installed, the command returns a client version and you can skip the next
step. This tutorial works with any version of kubectl.

2. Install kubectl into your local environment if necessary:

3. Create a regional GKE cluster in the us-central1 region with one node each in two
different zones:

4. Get the GKE cluster credentials:

You now have a regional cluster installed and available for installing PostgreSQL into the
cluster. The following screenshot of the Cloud Console Kubernetes clusters
 (https://console.cloud.google.com/kubernetes/list) page shows the regional cluster:

kubectl version

gcloud components install kubectl

gcloud container clusters create "postgres-gke-regional" \

--region "us-central1" \

--machine-type "e2-standard-2" --image-type "COS" --disk-type "pd-standard

--num-nodes "1" --node-locations "us-central1-b","us-central1-c"

gcloud container clusters get-credentials postgres-gke-regional --region us-

https://console.cloud.google.com/kubernetes/list

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 5/19

Deploy PostgreSQL to the regional GKE cluster

In this step, you create the volume and persistent volume claim. The volume will be a blank
regional persistent disk across two zones (us-central1-b and us-central1-c).

1. Create a postgres-pv.yaml �le, and then apply it to the GKE cluster. Doing this creates
the required PersistentVolumeClaim based on a regional persistent disk
 (/compute/docs/disks#repds).

2. Create and apply a PostgreSQL deployment:

cat > postgres-pv.yaml << EOF

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

 name: regionalpd-storageclass

provisioner: kubernetes.io/gce-pd

parameters:

 type: pd-standard

 replication-type: regional-pd

allowedTopologies:

- matchLabelExpressions:

- key: failure-domain.beta.kubernetes.io/zone

 values:

- us-central1-b

- us-central1-c

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: postgresql-pv

spec:

 storageClassName: regionalpd-storageclass

 accessModes:

- ReadWriteOnce

 resources:

 requests:

 storage: 300Gi

EOF

kubectl apply -f postgres-pv.yaml

https://cloud.google.com/compute/docs/disks#repds

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 6/19

cat > postgres-deployment.yaml << EOF

apiVersion: apps/v1

kind: Deployment

metadata:

 name: postgres

spec:

 strategy:

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 1

 type: RollingUpdate

 replicas: 1

 selector:

 matchLabels:

 app: postgres

 template:

 metadata:

 labels:

 app: postgres

 spec:

 containers:

- name: postgres

 image: postgres:10

 resources:

 limits:

 cpu: "1"

 memory: "4Gi"

 requests:

 cpu: "1"

 memory: "4Gi"

 ports:

- containerPort: 5432

 env:

- name: POSTGRES_PASSWORD

 value: password

- name: PGDATA

 value: /var/lib/postgresql/data/pgdata

 volumeMounts:

- mountPath: /var/lib/postgresql/data

 name: postgredb

 volumes:

- name: postgredb

 persistentVolumeClaim:

 claimName: postgresql-pv

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 7/19

In a production environment, don't include a cleartext password in a con�guration �le
that resides in a code repository. Instead, use Secrets to store sensitive data
 (/con�g-connector/docs/how-to/secrets).

3. Create and apply the PostgreSQL service:

The PostgreSQL database instance is now running in GKE as a service. The following
screenshot of the Cloud Console Workloads
 (https://console.cloud.google.com/kubernetes/workload) page shows the service status:

EOF

kubectl apply -f postgres-deployment.yaml

cat > postgres-service.yaml << EOF

apiVersion: v1

kind: Service

metadata:

 name: postgres

spec:

 ports:

- port: 5432

 selector:

 app: postgres

 clusterIP: None

EOF

kubectl apply -f postgres-service.yaml

https://cloud.google.com/config-connector/docs/how-to/secrets
https://console.cloud.google.com/kubernetes/workload

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 8/19

Next, you create a sample dataset and execute a simulated failover to test the high-availability
setup of the PostgreSQL service.

Creating a test dataset

In this section, you create a database and a table with sample values. The database serves as
a test dataset for the failover process that you test later in this document.

1. Connect to your PostgreSQL instance:

2. Create a database and a table, and then insert some test rows:

POD=`kubectl get pods -l app=postgres -o wide | grep -v NAME | awk '{print $

kubectl exec -it $POD -- psql -U postgres

create database gke_test_regional;

\c gke_test_regional;

CREATE TABLE test(

 data VARCHAR (255) NULL

);

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 9/19

3. To verify that the test rows were inserted, select all rows:

4. Exit the PostgreSQL shell:

The database instance now has a test dataset. After a failover based on a regional persistent
disk, the same dataset must be available after the failover.

Simulating database instance failover

To simulate failover, you remove the node that is hosting the PostgreSQL pod, and then delete
the existing pod. When you delete the pod, the GKE cluster is forced to move PostgreSQL into a
different zone.

1. Identify the node that is currently hosting PostgreSQL:

Notice the zone where this node was created.

The node now has two disks attached, as shown in the following screenshot of the Cloud
Console VM instances (https://console.cloud.google.com/compute/instances) page:

insert into test values

('Learning GKE is fun'),

('Databases on GKE are easy');

select * from test;

\q

CORDONED_NODE=`kubectl get pods -l app=postgres -o wide | grep -v NAME | awk

echo ${CORDONED_NODE}

gcloud compute instances list --filter="name=${CORDONED_NODE}"

https://console.cloud.google.com/compute/instances

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 10/19

2. Disable scheduling of any new pods on this node:

The node is cordoned, so scheduling is disabled on the node that the database instance
resides on.

3. Delete the existing PostgreSQL pod:

4. Verify that a new pod is created on the other node.

It might take a while for the new pod to be ready (usually around 30 seconds).

5. Verify the node's zone:

kubectl cordon ${CORDONED_NODE}

kubectl get nodes

POD=`kubectl get pods -l app=postgres -o wide | grep -v NAME | awk '{print $

kubectl delete pod ${POD}

kubectl get pods -l app=postgres -o wide

NODE=`kubectl get pods -l app=postgres -o wide | grep -v NAME | awk '{print

echo ${NODE}

gcloud compute instances list --filter="name=${NODE}"

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 11/19

Notice that the pod is deployed in a different zone from where the node was created at
the beginning of this procedure.

The following screenshot shows that the new VM has the same disks available (including
the regional persistent disk) that the preceding VM had:

6. Connect to the database instance:

7. Verify that the test dataset exists:

The output matches the test values that you inserted when you created the test database
earlier in this tutorial.

You have now completed a simulated failover that proves that based on the regional disk,
PostgreSQL can fail over without loss of data.

To make the cordoned node schedulable again, execute the following commands:

1. Re-enable scheduling for the node for which scheduling was disabled:

POD=`kubectl get pods -l app=postgres -o wide | grep -v NAME | awk '{print $

kubectl exec -it $POD -- psql -U postgres

\c gke_test_regional;

select * from test;

\q

kubectl uncordon $CORDONED_NODE

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 12/19

2. Check that the node is ready again:

The output is a list of nodes that includes the previously cordoned node.

The regional cluster is now fully functional again.

Con�guring database access

This section provides options to con�gure database access. First, you create public access to
connect to the database. Next, you set up port forwarding to connect to the database from
your local machine.

If you want to provide access to the database from outside your organization, you can enable
public access. You can use �rewall rules to restrict the IP addresses that are allowed to access
the database. A public IP address doesn't mean that anybody can access the database.

If you need to access the database from your machine in context of software development, or
to analyze the database contents, you can set up port forwarding. Port forwarding doesn't
require you to create a public IP address.

Create public access

At this time, the database isn't accessible over a public IP address. To see that no public IP
address is available, run the following command:

To make the service publicly accessible, complete the following steps:

1. Remove the current non-public service:

kubectl get nodes

kubectl get services postgres

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 13/19

2. Create and deploy a new service con�guration �le to create a public IP address:

3. Verify that a public IP (EXTERNAL-IP) address will be assigned. This step might take a
few moments.

After the public IP address is available, you can connect to the database.

Set up po� forwarding

Instead of opening up the database service and providing a public IP address, you can use port
forwarding to access the database from your machine:

1. To remove the public IP address, reset the service:

kubectl delete -f postgres-service.yaml

cat > postgres-service.yaml << EOF

apiVersion: v1

kind: Service

metadata:

 name: postgres

spec:

 ports:

- port: 5432

 selector:

 app: postgres

 type: LoadBalancer

EOF

kubectl apply -f postgres-service.yaml

kubectl get services postgres

kubectl delete -f postgres-service.yaml

cat > postgres-service.yaml << EOF

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 14/19

2. Verify that EXTERNAL-IP has a value of <none>:

3. In the Cloud Console, go to Kubernetes Engine > Services & Ingress
 (https://console.cloud.google.com/kubernetes/discovery).

4. On the Services tab, click the service name postgres.

5. Click Port Forwarding. The Debug dialog appears, similar to the following screenshot:

6. In the Debug dialog, copy the gcloud tool command, and then change the port 8080 to
5432. The resulting command looks like the following:

apiVersion: v1

kind: Service

metadata:

 name: postgres

spec:

 ports:

- port: 5432

 selector:

 app: postgres

 clusterIP: None

EOF

kubectl apply -f postgres-service.yaml

kubectl get services postgres

gcloud container clusters get-credentials postgres-gke-regional \

 --region us-central1 --project pg-on-gke \

 && kubectl port-forward $(kubectl get pod --selector="app=postgres" \

 --output jsonpath='{.items[0].metadata.name}') 5432:5432

https://console.cloud.google.com/kubernetes/discovery

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 15/19

The change from 8080 to 5432 means that you can access the database using port 5432.

7. On your local machine, open a terminal window, and then run the port forwarding
command that you modi�ed in the preceding step:

8. If you aren't already logged in, enter your login credentials when you're prompted:

After the authentication succeeds, run the modi�ed port forwarding command again.

9. Start the PostgreSQL client (or use your preferred IDE), and then verify that you can
access the database:

When you use port forwarding, you can access the database without creating a public IP
address.

Understanding options to deploy a database instance in GKE

Assuming a microservices-based application running in GKE, the following are deployment
options for database instances in GKE:

gcloud container clusters get-credentials postgres-gke-regional \

--region us-central1 --project pg-on-gke \

&& kubectl port-forward $(kubectl get pod --selector="app=postgres" \

--output jsonpath='{.items[0].metadata.name}') 5432:5432

gcloud auth login

psql --host 127.0.0.1 -U postgres -p 5432

\c gke_test_regional;

select * from test;

\q

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 16/19

Kubernetes pod: As shown in this tutorial, you can deploy and run a PostgreSQL instance
in a container.

Compute Engine instance: You can install and manage a PostgreSQL instance in a
Compute Engine (/compute) instance.

Cloud SQL: For a more managed option, you can launch PostgreSQL in Cloud SQL for
PostgreSQL (/sql/docs/postgres).

Each of the preceding options has different considerations, some of which are described in the
following list. Some of the considerations aren't strict technical facts, and they might involve
trade-offs during the decision process. There is no universal deployment option: use the list to
help you decide which option is best for your workload and requirements.

Move to a cloud provider-managed database: A database like Cloud SQL or Cloud
Spanner is a managed database. A managed database provides reduced operational
overhead and is optimized for the Google Cloud infrastructure. You might �nd it easier to
manage and to operate than a database deployed in Kubernetes.

Keep your current database deployment: If your current database deployment is stable
and reliable, and if there is no real requirement or reason to change it, it might be best to
keep it.

If your team develops new applications on Kubernetes, it's important to consider your
database deployment. In that case, you might consider a change to your database
deployment as a second phase after the application is in production.

Database independence: As mentioned earlier, the lifecycle of a
PersistentVolumeClaim is tied to the corresponding GKE cluster. If you need to
maintain the database and have its lifecycle independent of GKE clusters, you might
prefer to keep it separate from GKE in a VM instance or as a managed database.

Scaling with GKE

Vertical scaling: You can con�gure automatic vertical scaling for GKE. However, we
don't recommend this because vertical scaling causes the pod to be redeployed,
which causes a brief outage.

Horizontal scaling: You can't do horizontal scaling for singleton services such as
PostgreSQL.

GKE overhead: GKE reserves resources
 (/kubernetes-engine/docs/concepts/cluster-architecture#memory_cpu) for its own operations.

https://cloud.google.com/compute
https://cloud.google.com/sql/docs/postgres
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#memory_cpu

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 17/19

Databases aren't scaled automatically, so overhead might be high for small pods.

Number of database instances: In the context of Kubernetes, each database instance
runs in its own pod and has its own PersistentVolumeClaim. If you have a high number
of instances, you have to operate and manage a large set of pods, nodes, and volume
claims. You might want to use a managed database instead, because Google Cloud
handles a lot of management functionality.

Database backup in GKE: Typically, you make database backups on a separate volume
(or sometimes on a shared location). However, to create database backups using GKE,
you can deploy a separate pod running the pqsl (http://postgresguide.com/utilities/psql.html)

utility pg_dump on respective volumes.

Kubernetes-speci�c recovery behavior: Kubernetes has a built-in assumption and design
that any failed pod is recreated, not restarted. From a database instance perspective, this
means that when a pod is recreated, any con�guration that isn't persistent within a
database or on stable storage outside pods is also recreated.

Kubernetes con�guration: When you create con�guration controls, you have to ensure
that you create only one primary pod. You must verify con�guration �les to ensure that
no incorrect con�guration accidentally takes place.

PersistentVolumeClaim scope: A PersistentVolumeClaim is scoped to a GKE cluster.
This scoping means that when a GKE cluster is deleted, the volume claim is deleted. Any
database �les in the cluster are also deleted. In order to guard against accidental loss of
the database �les, we recommend replication or frequent backup.

Database migration: Unless you continue to use an existing database system, you need
to plan for database migration so that the databases in your current system are migrated
to the databases running in GKE. For more information, see Database migration:
Concepts and principles (Part 1) (/solutions/database-migration-concepts-principles-part-1) and
Database migration: Concepts and principles (Part 2)
 (/solutions/database-migration-concepts-principles-part-2).

Re-training: If you move from a self-managed or provider-managed deployment to a
Kubernetes database deployment, you need to retrain database administrators (DBAs) to
operate in the new environment as reliably as they operate in the current environment.
Application developers might also have to learn about differences to a lesser extent.

The preceding list provides a discussion of some of the considerations for database
deployment. However, the list doesn't include all possible considerations. You also need to

http://postgresguide.com/utilities/psql.html
https://cloud.google.com/solutions/database-migration-concepts-principles-part-1
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 18/19

consider disaster recovery, connection pooling, and monitoring.

Con�guring alternative cluster deployments

In this document, you deployed a regional GKE cluster with one node each in two zones, and
you created a regional persistent disk in the same zones. This con�guration enables failover
on a database instance level: if one of the zones fails, the other zone provides the consistent
state on the regional disk, and a PostgreSQL container is started in the zone that remains
available.

From a database instance perspective, PostgreSQL runs in one zone only at any time. However,
if an application runs (as containers) in two zones at the same time, it assumes the capacity of
nodes in two zones. Therefore, a zone failure halves the capacity available for the application

From an application perspective, you might want to create a cluster across three zones. In this
case, we recommend planning the outage of one zone from a capacity perspective so that a
zone failure doesn't impact the application performance.

Cleaning up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial,
either delete the project that contains the resources, or keep the project and delete the
individual resources.

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial,
delete the project you created for the tutorial.

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

3/2/2021 Deploying highly available PostgreSQL with GKE | Solutions

https://cloud.google.com/solutions/deploying-highly-available-postgresql-with-gke 19/19

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

Go to Manage resources (https://console.cloud.google.com/iam-admin/projects)

2. In the project list, select the project that you want to delete, and then click Delete.

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

For information about using MySQL to create a primary database with replicas, see Run a
Replicated Stateful Application
 (https://kubernetes.io/docs/tasks/run-application/run-replicated-stateful-application/).

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2021-03-01 UTC.

https://console.cloud.google.com/iam-admin/projects
https://kubernetes.io/docs/tasks/run-application/run-replicated-stateful-application/
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

